Questions? Give Us a Call
(678) 940-6433

Alternative to concrete absorbs CO2 in construction

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Alternative to concrete absorbs CO2 in construction

Keep up with the latest from CCR-Mag.com

Fill out the form Below

Mitigating climate change is one of the biggest challenges facing the world’s population. Now, a team of researchers at Worcester Polytechnic Institute has developed an entirely new material that’s a low-cost, high-impact sustainable solution to address one of the largest contributors to climate changeโ€”concrete.
According to Statisa, between 1995 and 2020 worldwide cement production jumped from 1.39 billion to 4.1 billion tons, making it the second most widely used substance on Earth next to water. Due to how ubiquitous concrete is, and its high carbon dioxide (CO2) emissions, “humanity needs to come up with an alternative to concrete,” says Civil, Environmental & Architectural Engineering Associate Professor Nima Rahbar.
As published in the journal Matter, the research at WPI has led to the creation of a self-healing Enzymatic Construction Material (ECM), which the research team describes as a “living material” that “provides a pathway to repair or even replace [traditional] concrete in the future.”
Biological enzymes are catalysts that drive chemical reactions. The material uses an enzyme, known as carbonic anhydrase, that is found in all living cells. Carbonic anhydrase efficiently reacts with CO2, and “has the unique ability to rapidly remove the greenhouse gas from the atmosphere. This property has allowed us to formulate a carbon-negative material that we hope may ultimately replace concrete,” says Richard Whitcomb Professor of Chemistry and Biochemistry Suzanne Scarlata.
ECM is made through a process involving an enzyme reaction that creates calcium carbonate crystals, which serve as the material’s main ingredient. A sand slurry is also added to the material, as well as a polymer, which holds the material together during its early stages, much like scaffolding does during the construction of a building. The material can also heal itself if cracks develop from wear and tear over time, or from other damage, retaining its strength through as many as six self-healing cycles.
This research builds on an interdisciplinary collaboration between Rahbar, Scarlata and Ph.D. student Shuai Wang. The team previously created a new type of self-healing concrete. The new negative emission construction material takes it a step further, leaving concrete behind to create an entirely new substance that is, in part, made from carbon dioxide: CO2 goes into the material during its production, and the material also consumes CO2 during the self-healing process. In fact, the team devised a calculation that shows “one cubic yard of ECM stores 18 pounds of CO2, while one cubic yard of concrete emits 400 pounds of CO2,” says Rahbar.
Through extensive testing and experimentation, the research team found the material has what they describe as “outstanding” compression strength, rivaling traditional mortar, making it strong enough to be used in the construction of bridges or buildings as compressive elements. It also does not require baking at high temperatures like a traditional brick does, and it can be made quickly, unlike the 28 days needed to cure concrete. ECM can also be produced at a low cost as the percentage of the enzymes is minute.
While we may not see ECM at a construction site immediately, it could not be too long before we do. The research team plans to take steps to bring the material out of the lab soon, first by enhancing the properties of ECM by “optimizing the catalytic efficiency of enzymes, the property of scaffolds, and the mechanics of crystal structure,” and then by starting to commercialize the product.

Events

Read more BELOW

ย 

The 2024 virtual Men’s Round Table will be held Q4, 2024, date TBD.

2024 Virtual Menโ€™s Round Tables

2023 Virtual Men’s Round Table was held on November 7th, 2023 via Zoom.


ย 

2024 Virtual Women’s Round Table

2023 Women’s Round Table #1 was held on October 20th, 2023 via Zoom

News

Costa Ricaโ€™s Hotel Belmar named #3 Best Resort in Central America

Recognized for its varied wildlife, sustainability efforts, adventurous and wellness pursuits and more, the country of Costa Rica (Travel + Leisureโ€™s Destination of 2024) continues to produce the best and brightest in the hospitality industry.ย In the recently released Travel + Leisure Worldโ€™s Best Awards 2024,

Supplements/Podcast
See Website for Details

This content (including text, artwork, graphics, photography, and video) was provided by the third party(ies) as referenced above. Any rights or other content questions or inquiries should be directed such third-party provider(s).

Receive the CCR 2024 Idustry Report

Get ahead of your Competitors with CCR's FREE Industry Insider's Report 2024!

Always stay two steps ahead of your Competitors. Stay informed with the latest in the Industry.ย 

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

This site uses cookies to ensure that you get the best user experience. By choosing “Accept” you acknowledge this and that ccr-mag.com operates under the Fair Use Act. Furthermore, Changing privacy laws now require website visitors from EEA based countries to provide consent in order to use personalized advertising or data modeling with either Google Ads & Analytics. Find out more on the Privacy Policy & Terms of Use Page